Fe b 20 00 A note on the crystalline subrepresentation functor
نویسنده
چکیده
We propose the notion of the crystalline sub-representation functor defined on p-adic representations of the Galois groups of finite extensions of Qp, with certain restrictions in the case of integral representations. By studying its rightderived functors, we find a natural extension of a formula of Grothendieck expressing the group of connected components of a Neron model of an abelian variety in terms of Galois cohomology. Une remarque sur le foncteur de sous-representation cristalline Resumé: Nous proposons la notion d’un foncteur de sous-representation cristalline defini pour les representations p-adiques des groupes de Galois des extensions finies de Qp, avec certaines restrictions dans le cas des representations integrales. Nous étudions leur foncteurs derivés à droite et les utilisons pour obtenir une généralisation naturelle d’une formule de Grothendieck donnant le groupe de composantes d’un modèle de Neron d’une variété abélienne en terme de cohomologie galoisienne. Notation: K: finite extension of Qp. R: the ring of integers in K. K0: maximal unramified subfield of K. k: residue field of K=residue field of K0. W = W (k): Witt vectors of k= ring of integers in K0. K̄: an algebraic closure of K. K: the maximal unramified subextension of K̄/K. G = Gal(K̄/K): the Galois group of K̄ over K. I = Gal(K̄/K): the inertia subgroup of G. l: a prime different from p.
منابع مشابه
A Geometric Jacquet Functor 3
In the paper [BB1], Beilinson and Bernstein used the method of localisation to give a new proof and generalisation of Casselman’s subrepresentation theorem. The key point is to interpret n-homology in geometric terms. The object of this note is to go one step further and describe the Jacquet module functor on Harish-Chandra modules via geometry. Let GR be a real reductive linear algebraic group...
متن کاملA Geometric Jacquet Functor
In the paper [BB1], Beilinson and Bernstein used the method of localisation to give a new proof and generalisation of Casselman’s subrepresentation theorem. The key point is to interpret n-homology in geometric terms. The object of this note is to go one step further and describe the Jacquet module functor on Harish-Chandra modules via geometry. Let GR be a real reductive linear algebraic group...
متن کاملFe b 20 00 INTERCHANGING HOMOTOPY LIMITS AND COLIMITS IN CAT
Here HOM is the functor category, π∗ is induced by the natural projection π : hocolimI C −→ I, 0 is the category with only one map and id maps the only object of 0 to the identity functor. A reason for using the above definitions is that taking nerves one recovers the usual homotopy (co)limits for simplicial sets, up to homotopy in the case of hocolim ([T]) and up to isomorphism in the case of ...
متن کاملA note on semi-regular locales
Semi-regular locales are extensions of the classical semiregular spaces. We investigate the conditions such that semi-regularization is a functor. We also investigate the conditions such that semi-regularization is a reflection or coreflection.
متن کامل/ 00 12 21 5 v 2 1 6 Fe b 20 01 Determination of Unitarity Triangle parameters : where do we stand ?
In this note I review the current determination of the unitarity triangle parameters by using the theoretical and experimental information available in summer 2000. email: [email protected] work done in collaboration with M. Ciuchini, G. D’Agostini, E. Franco, V. Lubicz, G. Martinelli, F. Parodi and P. Roudeau
متن کامل